-- AliceSvärdström - 22 Apr 2024

This section is for analyzing:
  • the dependence of the kinetic energy of the proton ejectile T_1 on its return distance to the axis z, on the kinetic energy of incoming beam particles T, and on the emission angle of the proton in the CM frame theta_CM.
  • the dependence of cos(theta_CM), the cosine of the emission angle of the proton in the CM frame, on the kinetic energy of the proton ejectile T_1 and on its return distance to the axis z.
  • the dependence of the nucleus excitation energy E_x on the kinetic energy of the proton ejectile T_1 and on its return distance to the axis z.
By combining equations from the kinematics write-up HELIOS__study_of_nuclear_reactions_in_inverse_kinematics.pdf and Anna's licentiate, we can derive several implicit dependencies of some target variables, which is shown below:

From equation (98) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf, using (2.5), (2.6) and (2.7c) from Anna's licentiate, we get

\begin{align*}

\text{e}&=\frac{M_c^2 + m_1^2 - m_2^2}{\gamma \cdot 2{E_t}^2} - m_1 + \alpha \beta z= \ &=\frac{((m_a + m_b + T)^2 - (T+m_a)^2+m_a^2) + m_1^2 - m_2^2}{\frac{1}{\sqrt{1 - \frac{(T + m_a)^2 - m_a^2}{m_a + m_b + T}}} \cdot 2((m_a + m_b + T)^2 - (T+m_a)^2+m_a^2)} - m_1 + \alpha \left(\frac{\sqrt{(T + m_a)^2 - m_a^2}}{m_a + m_b + T}\right) z = \ &=\text{e(T,z)}.

\end{align*}

From equation (108) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf, using (2.5), (2.6) and (2.7c) from Anna's licentiate for a constant $T$, we get

\begin{align*}

\text{e}&=-m_1 + \frac{-\sin^2(\theta) \alpha \beta \gamma^2 z + \cos(\theta) \sqrt{\alpha^2 z^2 + m_1^2 \left(1 - \sin^2(\theta) \gamma^2\right)}}{1 - \sin^2(\theta) \gamma^2}\ &=-m_1 + \frac{-\sin^2(\theta) \alpha \frac{\frac{\sqrt{(T_{\text{const}} + m_a)^2 - m_a^2}}{m_a + m_b + T_{\text{const}}} }{1 - \frac{(T_{\text{const}} + m_a)^2 - m_a^2}{(m_a + m_b + T_{\text{const}})^2}} z + \cos(\theta) \sqrt{\alpha^2 z^2 + m_1^2 \left(1 - \sin^2(\theta) \frac{1}{1 - \frac{(T_{\text{const}} + m_a)^2 - m_a^2}{(m_a + m_b + T_{\text{const}})^2}}\right)}}{1 - \sin^2(\theta) \frac{1}{1 - \frac{(T_{\text{const}} + m_a)^2 - m_a^2}{(m_a + m_b + T_{\text{const}})^2}}}\ &=\text{e($\theta$,z)}.

\end{align*}

From equation (1.21) from short\_kinematics.pdf combined with (98) and (108) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf as well as (2.5), (2.6) and (2.7c) from Anna's licentiate, we get

\begin{align*}

\text{$E_x$}&=-m_2 + \sqrt{M_c^2 + m_1^2 - 2\gamma M_c (E - \alpha \beta z)}\ &=-m_2 + \sqrt{((m_a + m_b + T)^2 - (T+m_a)^2+m_a^2) + m_1^2 - 2\gamma \sqrt{(m_a + m_b + T)^2 - (T+m_a)^2+m_a^2} (E - \alpha \left(\frac{\sqrt{(T + m_a)^2 - m_a^2}}{m_a + m_b + T}\right) z)}\ &=\text{$E_x$(E,z)}.

\end{align*}

From equation (1.23) from short\_kinematics.pdf combined with (98) and (108) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf as well as (2.5), (2.6) and (2.7c) from Anna's licentiate, we get

\begin{align*}

\cos(\theta_{CM})=\frac{\gamma(E\beta-\alpha z)}{\sqrt(\gamma^2(E-\alpha\beta z)^2-m_1^2)}=\text{$\cos(\theta_{CM})$(E,z)}

\end{align*}

From these equations, the expressions of these target variables can be evaluated on some parameter space and visualized as 2D Contour plots and heatmaps using EoM.py from gitlab/iss_sim:

ContourFilledT(T1,z).pngHeatmapT(T1,z).png

Figure 1: Left: Right:

ContourFilledT1(cos,z).pngHeatmapT1(cos,z).png

Figure 2: Left: Right:

ContourFilledCosT1,z.pngHeatmapCos(T1,z).png

Figure 3: Left: Right:

ContourFilledEx(T1,z).pngHeatmapEx(T1,z).png

Figure 4: Left: Right:

I Attachment Action Size Date Who Comment
ContourFilledCosT1,z.pngpng ContourFilledCosT1,z.png manage 174 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourFilledEx(T1,z).pngpng ContourFilledEx(T1,z).png manage 127 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourFilledT(T1,z).pngpng ContourFilledT(T1,z).png manage 114 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourFilledT1(cos,z).pngpng ContourFilledT1(cos,z).png manage 135 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourFilledTransparentT(T1,z).pngpng ContourFilledTransparentT(T1,z).png manage 129 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourLinesCos(T1,z).pngpng ContourLinesCos(T1,z).png manage 629 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourLinesDashLevelsT(T1,z).pngpng ContourLinesDashLevelsT(T1,z).png manage 554 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourLinesEx(T1,z).pngpng ContourLinesEx(T1,z).png manage 654 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourLinesT(T1,z).pngpng ContourLinesT(T1,z).png manage 480 K 22 Apr 2024 - 22:09 AliceSvärdström  
ContourLinesT1(cos,z).pngpng ContourLinesT1(cos,z).png manage 619 K 22 Apr 2024 - 22:09 AliceSvärdström  
HeatmapCos(T1,z).pngpng HeatmapCos(T1,z).png manage 132 K 22 Apr 2024 - 22:09 AliceSvärdström  
HeatmapEx(T1,z).pngpng HeatmapEx(T1,z).png manage 119 K 22 Apr 2024 - 22:09 AliceSvärdström  
HeatmapT(T1,z).pngpng HeatmapT(T1,z).png manage 134 K 22 Apr 2024 - 22:09 AliceSvärdström  
HeatmapT1(cos,z).pngpng HeatmapT1(cos,z).png manage 111 K 22 Apr 2024 - 22:09 AliceSvärdström  
This topic: SubExp_Chalmers > WebHome > Kinematics
Topic revision: 23 Apr 2024, AliceSvärdström
This site is powered by FoswikiCopyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Foswiki? Send feedback