From equation (98) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf, using (2.5), (2.6) and (2.7c) from Anna's licentiate, we get
\begin{align*}
\text{e}&=\frac{M_c^2 + m_1^2 - m_2^2}{\gamma \cdot 2{E_t}^2} - m_1 + \alpha \beta z= \ &=\frac{((m_a + m_b + T)^2 - (T+m_a)^2+m_a^2) + m_1^2 - m_2^2}{\frac{1}{\sqrt{1 - \frac{(T + m_a)^2 - m_a^2}{m_a + m_b + T}}} \cdot 2((m_a + m_b + T)^2 - (T+m_a)^2+m_a^2)} - m_1 + \alpha \left(\frac{\sqrt{(T + m_a)^2 - m_a^2}}{m_a + m_b + T}\right) z = \ &=\text{e(T,z)}.
\end{align*}
From equation (108) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf, using (2.5), (2.6) and (2.7c) from Anna's licentiate for a constant $T$, we get
\begin{align*}
\text{e}&=-m_1 + \frac{-\sin^2(\theta) \alpha \beta \gamma^2 z + \cos(\theta) \sqrt{\alpha^2 z^2 + m_1^2 \left(1 - \sin^2(\theta) \gamma^2\right)}}{1 - \sin^2(\theta) \gamma^2}\ &=-m_1 + \frac{-\sin^2(\theta) \alpha \frac{\frac{\sqrt{(T_{\text{const}} + m_a)^2 - m_a^2}}{m_a + m_b + T_{\text{const}}} }{1 - \frac{(T_{\text{const}} + m_a)^2 - m_a^2}{(m_a + m_b + T_{\text{const}})^2}} z + \cos(\theta) \sqrt{\alpha^2 z^2 + m_1^2 \left(1 - \sin^2(\theta) \frac{1}{1 - \frac{(T_{\text{const}} + m_a)^2 - m_a^2}{(m_a + m_b + T_{\text{const}})^2}}\right)}}{1 - \sin^2(\theta) \frac{1}{1 - \frac{(T_{\text{const}} + m_a)^2 - m_a^2}{(m_a + m_b + T_{\text{const}})^2}}}\ &=\text{e($\theta$,z)}.
\end{align*}
From equation (1.21) from short\_kinematics.pdf combined with (98) and (108) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf as well as (2.5), (2.6) and (2.7c) from Anna's licentiate, we get
\begin{align*}
\text{$E_x$}&=-m_2 + \sqrt{M_c^2 + m_1^2 - 2\gamma M_c (E - \alpha \beta z)}\ &=-m_2 + \sqrt{((m_a + m_b + T)^2 - (T+m_a)^2+m_a^2) + m_1^2 - 2\gamma \sqrt{(m_a + m_b + T)^2 - (T+m_a)^2+m_a^2} (E - \alpha \left(\frac{\sqrt{(T + m_a)^2 - m_a^2}}{m_a + m_b + T}\right) z)}\ &=\text{$E_x$(E,z)}.
\end{align*}
From equation (1.23) from short\_kinematics.pdf combined with (98) and (108) from HELIOS\_\_study\_of\_nuclear\_reactions\_in\_inverse\_kinematics.pdf as well as (2.5), (2.6) and (2.7c) from Anna's licentiate, we get
\begin{align*}
\cos(\theta_{CM})=\frac{\gamma(E\beta-\alpha z)}{\sqrt(\gamma^2(E-\alpha\beta z)^2-m_1^2)}=\text{$\cos(\theta_{CM})$(E,z)}
\end{align*}
From these equations, the expressions of these target variables can be evaluated on some parameter space and visualized as 2D Contour plots and heatmaps using EoM.py from gitlab/iss_sim: